There are two very important clinical
advantages of this research program; first we can predict which patient will respond to which drug depending on the genetic signature of their cancer, second we are able to target the dormant cells by reverting them to become chemo and radiosensitive. In summary we conclude that the tumor microenvironment renders the invasive cells chemo and radio resistant and thereby protecting them from the initial chemo and TSA HDAC cell line radio therapy. This probably causes a relapse of the disease after a period of apparent remission. O72 Immunosuppressive Tumor Microenvironment in ret Transgenic Mouse Melanoma Model Viktor Umansky 1 , Fang Zhao1, Christiane Meyer1, Silvia Kimpfler1, Dirk Schadendorf1 1 Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany Melanoma is known for its poor response to current immunotherapies due to immunosuppressive cells and factors in the tumor microenvironment, which inhibit NSC23766 in vivo antitumor immune responses.
We use a recently developed ret transgenic mouse skin melanoma model, which closely resemble human melanoma with respect to genetics, histopathology and clinical features. After a short latency (20–70 days), around 25% of mice spontaneously develop melanoma metastasizing to lymph nodes, liver and lungs. We demonstrated a tumor infiltration with immature dendritic cells (DCs) that secreted more interleukin (IL)-10 and less IL-12p70 and showed a decreased capacity to activate T cells compared to DCs from normal animals. Observed dysfunction was linked to p38 MAPK activation. Inhibition of its activity led to the normalization of cytokine secretion pattern and T-cell stimulation capacity of DCs from tumor bearing mice. TCR zeta-chain expression in lymphoid organs and tumors was down-regulated, which was associated with an increase in Gr1+CD11b+
myeloid derived suppressor cells (MDSC) in these mice. Co-culture of normal T cells with MDSCs from tumor bearing mice led to the down-regulation of zeta-expression. Oral application of an inhibitor of phosphodiesterase-5 sildenafil (Viagra) resulted in a retardation of melanoma progression associated with an increase in tumor-infiltrating CD8+ and CD4+ T cells and in their zeta-chain expression. Higher numbers of regulatory T cells (Treg) were found at early stages of melanoma progression compared to more advanced tumors. These data inversely correlated with Treg amounts in the bone selleck products marrow suggesting a possible Treg recruitment to primary tumors. Although anti-CD25 antibody injections resulted in the efficient Treg depletion from lymphoid organs, melanoma development was not delayed indicating that in the autochthonous melanoma genesis, other immunosuppressive cells could play replace tumor promoting Treg functions.