However, we conducted multiple clinical tests with the children a

However, we conducted multiple clinical tests with the children and discomfort from foveal stimulation was not reported. While our aim here was to provide evidence that processing of peripheral visual space is altered during the early sensory processing period in ASD, the resolution of our methods does not allow for localization of these altered representations at the level of

specific cortical regions. However, this probably includes the early retinotopically mapped areas (V1 and V2) as well as other early extra-striate regions. These regions are very rapidly activated (see Foxe & Simpson, 2002) and parsing their respective contributions to the early VEP components using source localization, with a sensor array that was relatively sparse (only 72 scalp sites), is not possible. However, an obvious direction for future research would be to use much more precise retinotopic mapping techniques and considerably denser electrode SCH772984 molecular weight arrays to try to tease apart the respective contribution of these early regions to this remapping (see Kelly et al., 2008; Shpaner et al., Selleckchem BMS-907351 2013 for methods). It would also be instructive to assess how changes in peripheral representation might affect visual perceptual sensitivity at peripheral locations in ASD, as the present study did not explicitly assay potential behavioral effects. The present electrophysiological

results provide evidence that peripheral visual processing is atypical in ASD. We hypothesize that these observed changes in processing are due to altered cortical representations of visual space in ASD, which might be a consequence of the more variable fixation behavior often observed

in this population. In contrast to the peripheral stimulation condition, there was no detectable difference between autistic and control children in processing of centrally presented, simple visual stimuli, independent of whether the stimuli were biased towards magnocellular neurons or not. This pattern of results is not in line with a magnocellular deficit theory of autism. very We thank Dr Juliana Bates, Alice B. Brandwein, Daniella Blanco, Sarah Ruberman, Kristina Dumas, Joanna Peters and Frantzy Acluche for their valuable support over the course of this project. We acknowledge Dr Jonathan Horton of the Beckman Vision Center at UCSF for very kindly providing area estimates of the cortical magnification factor in squirrel monkey V1 (personal communication with J.J.F.). We also extend our heartfelt gratitude to the children and families who have contributed their time so graciously to participate in this research. This work was primarily supported by a grant from the US National Institute of Mental Health (MH085322 to J.J.F. and S.M.). The Human Clinical Phenotyping Core, where the children enrolled in this study were clinically evaluated, is a facility of the Rose F.

2b Therefore, they may be responsible for

2b. Therefore, they may be responsible for Androgen Receptor antagonist the hydrolysis of RNA by a mechanism similar to RNase A. However, due to localization of aspartic acid (D535) on the surface of catalytic domain as shown in Fig. 2b, its role in RNA hydrolysis by mechanism similar to barnase and colicin E3 cannot be ruled out. Therefore, to determine individual role of conserved amino acid residues in the putative active site of catalytic domain of

xenocin, site-directed mutagenesis was performed. All the conserved amino acid residues were mutated to alanine, and endogenous toxicity assay was performed with each mutant strain. Growth profile of JSR4 strain–containing vector alone was considered as 100% and compared with growth profile of D535A, H538A, E542A, H551A, K564A and R570A strains. From the predicted structure of catalytic domain of xenocin as shown in Fig. 2b, it was observed that H538 was the most surface-exposed histidine residue among the four other present in the catalytic domain. Endogenous assay showed that mutation at H538 position results in the reduction of toxicity by more than 90% after 8 h postinduction as shown in Fig. 2c, which confirmed the role D535 as an important residue of the putative active site. As second conserved histidine residues H551 was nearer to H538 and exposed on the surface, it

may behave as the second histidine residue required for the hydrolysis of RNA by a mechanism similar to RNase A ribonuclease. Therefore, PCI-32765 order H551 was mutated to alanine, and endogenous assay was performed. Results showed that there was only 50% reduction in endogenous toxicity in H551A strain after 8 h of induction as shown in Fig. 2c. One reason for such minimum reduction in endogenous toxicity in H551A strain is that it could be due to partial exposure of H551 to the surface as compared to H538 as revealed by the surface view model of catalytic domain as through shown in

Fig. 2b. This result indicates that RNA hydrolysis mechanism of catalytic domain of xenocin is different from RNase A ribonuclease. D535 and E542 are two acidic amino acid residues that are conserved, exposed to surface as well as close to the H538 as shown in Fig. 2a and b. These two residues may be responsible for the hydrolysis of RNA by mechanism similar to barnase and colicin E3. Therefore, these two residues were mutated to alanine and analysed by endogenous assay. Endogenous toxicity assay result showed that toxicity was reduced by 70% after 8 h postinduction in E542A strain as shown in Fig. 2c. Structural studies showed that E542 was also a part of cleft formed by D535 and H538, which is exposed to the surface as shown in Fig. 2b. However, studies with D535 strain showed significant reduction (88%) in the endogenous toxicity after 8 h postinduction as shown in Fig. 2c; moreover, D535 was the closest amino acid residue with respect to H538 as shown in Fig. 2a.

It is not known if F1 doctors are aware of the pharmacist as a re

It is not known if F1 doctors are aware of the pharmacist as a resource to support their prescribing, nor the value they place on this support. We sought to explore F1 doctors’; beliefs and expectations of developing a safe prescribing practice prior to commencing their first job, and how prepared they are following their undergraduate medical training. Twelve self selecting F1 doctors from one teaching district general hospital attended a focus group in August 2013, which immediately followed their prescribing induction given by

a clinical pharmacist. A series of questions accompanied by visual prompts were initiated this website by the focus group convener to control proceedings and stimulate reflexive discussions. Proceedings were audio taped and contemporaneous notes were taken by a facilitator. Data were interrogated using simplified framework analysis to identify emergent themes. Ethics committee approval was not needed as this was deemed service evaluation according

to the Trust’s Research and Development Department guidance. Key themes: Organisation – Concerns were how to manage the anticipated quantity of prescriptions required under pressurised circumstances, and their unfamiliarity with the Trust’s computer systems for electronic prescribing. Environmental – F1 doctors were mindful of the hectic pace check details of work on the wards, anticipating multiple and simultaneous demands from staff and patients. They did not anticipate receiving any dispensation for being new to their post. Information-seeking strategies for

prescribing-related information – They would initially rely on the BNF and Trust’s guidelines to solicit technical information. The clinical pharmacist was also considered a source of technical prescribing-related information. However, where participants envisaged seeking information relating to particularly complicated scenarios, e.g. where the patient was on a complicated regimen, they proposed to rely on their doctor colleagues. Learning to take risks – Inherent risks to patients associated with prescribing is exacerbated by the F1 doctors’; lack of “real world” experience. Undergraduate prescribing was considered to be of limited use as it was largely formulaic and unable to impart a sense of their being responsible for prescribing. Montelukast Sodium The over arching concern was less to do with the properties of medicines etc. but more to do with ensuring the appropriateness of prescribing in the context of the individual patient’s circumstances. In this sense, the pharmacist’s expertise as medicines specialist may offer limited support because, while they may have the detailed knowledge of medicines, they may not necessarily have the relevant clinical details of the patient. Our findings of concerns with the work environment, access to drug information, and lack of prescribing experience are consistent with other studies.

In contrast, hMLH1 and hMSH2 were absent or had extremely low exp

In contrast, hMLH1 and hMSH2 were absent or had extremely low expression at estrogen levels ranging from 20 to 60 pg/mL, but some cell growth still occurred. Therefore, cells dividing in a low-estrogen environment are more likely BTK inhibitor to accumulate genetic errors due to low repair activity and may be at high risk for carcinogenesis. Based on these results, Miyamoto et al.[8] suggested that the incidence of growth-induced genetic errors should be low in young women with high estrogen levels and sufficient repair activity of MMR proteins, making carcinogenesis unlikely. In older women with lower estrogen

but an atrophic endometrium, carcinogenesis would also be unlikely because of the absence of cell growth. However, under perimenopausal Navitoclax conditions, the carcinogenic risk would

be increased because sufficient estrogen is present to promote cell division, but MMR activity is low. This intermediate status was defined as the cancer window (Fig. 1). The mismatch repair (MMR) system is responsible for repairing base mismatches that arise during DNA replication. Typical MMR proteins include hMLH1, hMSH2, hPMS2, hMSH3 and hMSH6. Genes encoding these proteins are called MMR genes and aberrations in these genes prevent correct repair of mismatched bases, resulting in DNA strands with different lengths. This phenomenon occurs in microsatellite regions of the human genome and is referred to as microsatellite instability (MSI). Microsatellites or short tandem repeats (STR) are repeating sequences of one to five base pairs of DNA, such as CA and CAG. Some STR

occur in regions encoding phosphatase and tensin homolog deleted on chromosome ten (PTEN), a lipid phosphatase that is a tumor suppressor gene; TGF-βR2 and IGF2R, which are associated with inhibition of cell proliferation; K-ras, which is involved in cell proliferation; and BAX, which is related to apoptosis induction. Therefore, MSI is implicated in carcinogenesis.[9] Aberrations in MMR genes are involved in carcinogenesis of type I endometrial cancer. These aberrations are caused by epigenetic changes independent of the DNA sequence, that is, gene inactivation by aberrant hypermethylation of promoter regions. Such inactivation of MMR genes permits accumulation of gene mutations and leads to carcinogenesis. Suplatast tosilate In endometrial cancer, carcinogenesis most frequently involves aberrant methylation of hMLH1 and mutation of hMLH1 is detected in 30% of cases. Mutations of hMLH1 are also found in atypical endometrial hyperplasia, which suggests that hMLH1 is implicated in the early stage of carcinogenesis.[10, 11] Muraki et al.[12] reported aberrant hMLH1 hypermethylation in 40.4% of patients with endometrial cancer and found significantly reduced hMLH1 protein levels in these patients (P < 0.01). However, none of the four cancer-related genes were aberrantly methylated in the normal endometrium. MMR genes are also causative genes in Lynch syndrome (hereditary nonpolyposis colorectal cancer).

Here, for the first time, we identified a brain region, the poste

Here, for the first time, we identified a brain region, the posterior parietal cortex, as a potential site for a memorial representation of altered stimulus associability. In three experiments using rats and a serial prediction task, we found that intact posterior parietal cortex function was essential during the encoding, consolidation, and retrieval of an associability memory enhanced by surprising omissions. We discuss these new results in the context of our previous findings and additional plausible frontoparietal and subcortical networks.


“When a single neuron is grown on a small island of glial cells, the neuron forms synapses selleck chemicals llc onto itself. The so-called autaptic culture systems have proven extremely valuable in elucidating basic mechanisms of synaptic transmission, as they allow application of technical approaches that cannot be used in slice preparations. However, this method has been almost exclusively used for pyramidal cells and interneurons. In this study, we generated autaptic cultures from granule cells isolated from the dentate gyrus of rodent hippocampi. Our subsequent morphological and functional characterisation of these cells confirms that this culture model is suitable for investigating basic mechanisms of granule cell synaptic transmission.

Importantly, the autosynaptic connectivity allows recordings of pure mossy fibre miniature EPSCs, which are not possible in slice preparations. Further, by fast application of hypertonic PR-171 in vitro sucrose solutions it is possible to directly measure the readily releasable pool and to calculate the probability of vesicular release. “
“Variation within mesolimbic dopamine (DA) pathways has significant implications for behavioral Ixazomib supplier responses to rewards, and previous studies have indicated long-term programming effects of early life stress on these pathways. In the current study, we examined

the impact of natural variations in maternal care in Long Evans rats on the development of DA pathways in female offspring and the consequences for reward-directed behaviors. We found that tyrosine hydroxylase (TH) immunoreactivity in the ventral tegmental area was elevated by postnatal day 6 in response to maternal licking/grooming (LG), and that these effects were sustained into adulthood. Increased TH immunoreactivity was not found to be associated with altered epigenetic regulation or transcriptional activation of Th, but probably involved LG-associated changes in the differentiation of postnatal DA neurons through increased expression of Cdkn1c, and enhanced survival of DA projections through LG-associated increases in Lmx1b and brain-derived neurotrophic factor. At weaning, high-LG offspring had elevated DA receptor mRNA levels within the nucleus accumbens and increased conditioned place preference for a high-fat diet.

The data also showed that none of the five genes was associated w

The data also showed that none of the five genes was associated with antifungal activity and the regulation of HSAF biosynthesis. Our results reveal the unusual regulatory role of these PKS and NRPS genes that were discovered from genome

mining in L. enzymogenes. “
“The Stenotrophomonas maltophilia k279a (Stm) Hex gene encodes a polypeptide of 785 amino acid residues, with an N-terminal signal Navitoclax research buy peptide. StmHex was cloned without signal peptide and expressed as an 83.6 kDa soluble protein in Escherichia coli BL21 (DE3). Purified StmHex was optimally active at pH 5.0 and 40 °C. The Vmax, Km and kcat/Km for StmHex towards chitin hexamer were 10.55 nkat (mg protein)−1, 271 μM and Z-VAD-FMK molecular weight 0.246 s−1 mM−1, while the kinetic values with chitobiose were 30.65 nkat (mg protein)−1, 2365 μM and 0.082 s−1 mM−1, respectively. Hydrolytic activity on chitooligosaccharides indicated that StmHex was an exo-acting enzyme and yielded N-acetyl-d-glucosamine (GlcNAc) as the final product. StmHex hydrolysed chitooligosaccharides (up

to hexamer) into GlcNAc within 60 min, suggesting that this enzyme has potential for use in large-scale production of GlcNAc from chitooligosaccharides. “
“The yicJI operon of the common genetic backbone of Escherichia coli codes an α-xylosidase and a transporter of the galactosides–pentoses–hexuronides : cation symporter family. In the extraintestinal pathogenic E. coli strain BEN2908, a metabolic operon (frz) of seven genes is found downstream of the yicI gene. It was proved that frz promotes

bacterial fitness under stressful conditions. During this work, we identified a motif containing a palindromic sequence in the promoter region of both the frz and the yicJI operons. We then showed that these two operons are Evodiamine cotranscribed, suggesting a functional relationship. The phenotypes of frz and yicJI deletion mutants were compared. Our results showed that although the yicJI operon is not essential for the life of E. coli, it is necessary for its fitness under all the growth conditions tested. The yicI and yicJ genes are part of the common genetic backbone of Escherichia coli. The analysis of sequenced E. coli genomes indicates that these two genes form an operon. In E. coli K-12 substrain MG1655, the yicJI operon is located between the yicH and the tRNA selC locus (Fig. 1). YicI is a family 31 α-glycosidase proved to be a hexameric α-xylosidase with low α-glucosidase activity. Its substrate specificity suggests that it is involved in the degradation of oligosaccharides containing the α-1,6-xylosidic linkage, like isoprimeverose, which constitutes a part of xyloglucan (Okuyama et al., 2004; Lovering et al., 2005).


“Serine hydroxymethyltransferase

(SHMT) is a key e


“Serine hydroxymethyltransferase

(SHMT) is a key enzyme in cellular one-carbon pathway and has been studied in many living organisms from bacteria to higher plants and mammals. However, biochemical and molecular characterization of SHMT from photoautotrophic microorganisms remains a challenge. Here, we isolated the SHMT gene from a halotolerant cyanobacterium Aphanothece halophytica (ApSHMT) and expressed it in Escherichia coli. Purified recombinant ApSHMT protein exhibited catalytic reactions for dl-threo-3-phenylserine as well as for l-serine. Catalytic reaction for l-serine was strongly inhibited by NaCl, but not to that level with glycine betaine. Overexpression of ApSHMT in E. coli resulted in the increased accumulation of glycine and serine. Choline and glycine betaine

levels were also significantly DNA Damage inhibitor Cyclopamine price increased. Under high salinity, the growth rate of ApSHMT-expressing cells was faster compared to its respective control. High salinity also strongly induced the transcript level of ApSHMT in A. halophytica. Our results indicate the importance of a novel pathway; salt-induced ApSHMT increased the level of glycine betaine via serine and choline and conferred the tolerance to salinity stress. Serine is an essential amino acid, and that plays important roles in a variety of biological processes including metabolism, purine and pyrimidine biosynthesis, and generation of activated one-carbon (C-1) unit

(Beaudin et al., 2011). Through serine hydroxymethyltransferase (SHMT), serine associates with glycine metabolism via the glycine decarboxylase complex (GDC). SHMT is a pyridoxal 5′-phosphate (PLP)-dependent Hydroxychloroquine nmr enzyme catalyzing the interconversion of serine and tetrahydrofolate (THF) to glycine and N5, N10-methylene-THF (Schirch et al., 1985). In mammals, SHMT has been shown to be involved in de novo biosynthesis of thymidylate (Anderson & Stover, 2009). Disruption of SHMT increases the risk of neural tube defects (Anderson & Stover, 2009; Beaudin et al., 2011). In prokaryotes such as Escherichia coli, 15% of all carbon atoms assimilated from glucose is estimated to pass through the glycine–serine pathway (Wilson et al., 1993). In plants, SHMT cooperates with the GDC to mediate photorespiratory glycine–serine interconversion (Voll et al., 2005; Bauwe et al., 2010). In cyanobacteria, the SHMT gene was suggested to be essential for cell survival because the complete segregation of SHMT gene could not be generated (Hagemann et al., 2005). Although the enzyme activity of SHMT from a cyanobacterium Synechocystis sp. PCC 6803 has been determined (Eisenhut et al., 2006), molecular properties of cyanobacterial SHMT remain largely unknown. Here, we report on the molecular and biochemical characterization of a putative ApSHMT gene from a halotolerant cyanobacterium Aphanothece halophytica (hereafter called A.

, 2002; Schäfer et al, 2005) The fact that some marine methyl h

, 2002; Schäfer et al., 2005). The fact that some marine methyl halide-degrading bacteria do employ an enzyme system such as CmuA, which is specific for the degradation of the related compounds methyl chloride and methyl bromide, suggests GSK269962 molecular weight that methyl halide degradation in the marine environment is not just a case of co-metabolism or detoxification of these compounds. On a scale relevant to microorganisms, and considering the vicinity of methyl halide-producing phytoplankton as potential hotspots of higher local concentrations, these trace gases may potentially be of selective advantage

for specialised bacterial populations that could utilise methyl halides as an energy and/or carbon source. Recent work by Halsey et al. (2012) suggests that degradation of C1 compounds including methyl chloride by the methylotrophic bacterium HTCC2181 may indeed be primarily linked to energy gain rather than carbon Obeticholic Acid order assimilation. The enzymatic basis of methyl chloride degradation in strain HTCC2181 is as yet unidentified, and the genome sequence of strain HTCC2181 does not contain a gene encoding CmuA. Also of interest is the wide geographic and environmental distribution of some highly similar cmuA

sequences. Clade 2 was detected in the Arabian Sea, Plymouth coastal waters and Aminobacter spp. isolated from soils. Given the enrichment methods used, it is not possible to associate particular sequences or clades of cmuA with biogeochemical data from the research cruise in the Arabian Sea. The Arabian Sea, at the time of sampling, had a gradient of nutrient levels, from oligotrophic waters in the South to strongly eutrophic waters in the North. It is interesting to note that all station 1 (oligotrophic) clones grouped in clade 3, whereas clones from stations 4 and 9 (higher nutrient Olopatadine levels) fell into clade 1. Further work with a higher resolution of cmuA diversity would be required to investigate whether this might indicate distinct ecological niches for these cmuA clades. The ecology and diversity of marine methyl

halide-degrading microorganisms and their role in the biogeochemical cycling of methyl halides remains a challenging field of biological oceanography. Further work is required to determine the extent to which methyl bromide is oxidised to CO2 or assimilated into microbial biomass in seawater. The diversity and activity of methyl halide-utilising bacteria in these environments should also be studied in more detail. Stable isotope probing with 13C-methyl bromide is a potential approach for detecting active methyl halide-degrading bacteria based on the assimilation of methyl halide carbon during growth-linked catabolism and has been used to detect bacteria related to Roseobacter and Methylophaga in samples from the English Channel (Neufeld et al., 2008).

While growth in the absence of CSP

was not drastically af

While growth in the absence of CSP

was not drastically affected by the loss of cinA (Fig. 4a), supplementing CSP resulted in an increased growth yield of SmuCinA relative to UA159 (Fig. 4b). In fact, the negative effect of CSP on growth was partially abolished when CinA was complemented (Fig. 4b), suggesting that killing effects of CSP was modulated by comX via the cinA. To validate cinA’s role in cell lysis, we performed cell viability assays in the presence of synthetic CSP. As expected, a significant increase in CFUs was observed in SmuCinA (54%) relative to UA159 (24%) (P < 0.002, Fig. 4c). Complementation of cinA did not bring the percentage survivors to wild type levels, although percentage viability of the SmuCinA+pCinAHis strain was substantially reduced to 35% relative to wild type selleck compound (P < 0.01). These results clearly demonstrate a role for CinA in CSP-induced cell lysis in S. mutans. A role for CinA in cell lysis of pneumococci was previously suggested by Novak et al. (2000) who showed that a zinc metalloprotease (ZmpB) mutant had a lysis defect when treated with penicillin. It was suggested that this defect was caused by co-localization of the autolysin LytA with CinA within the cytoplasm, wherein LytA was normally located in the cell membrane (Novak et al., 2000), a finding that could not be confirmed by a different group (Berge et al., 2001). Despite these conflicting results in S. pneumoniae,

the possibility of CinA interacting with a putative autolysin protein in S. mutans to initiate cell lysis should be considered. In S. pneumoniae, competent cells or those exposed to DNA Dasatinib supplier damaging agents produced a 5.7 kb polycistronic transcript that included cinA and recA (Martin Rolziracetam et al., 1995a, b). From this transcript, the product encoded by recA serves a critical step during transformation and DNA repair where it identifies homologous regions of incoming DNA and incorporates them into the host chromosome (Kowalczykowski, 1994). Martin et al. (1995a, b) also demonstrated that CinA and RecA interacted to modulate genetic competence and facilitate survival under DNA damaging

conditions. Hence, we next studied CinA’s role in contending with DNA damage by assessing cell survival under chemical agents that either damaged DNA directly or disrupted the replication process. We used MMC which inhibits growth by causing DNA cross-linkage (Tomasz, 1995) and MMS that stalls the replication fork in areas where homologous recombination occurs (Lundin et al., 2005). Following MMC treatment, survival of SmuCinA was not significantly altered relative to wild type (data not shown), which was similar to the results obtained for the CinA mutant in B. subtilis (Kaimer & Graumann, 2010). In contrast, a 22-fold reduction in survival was observed in SmuCinA, when exposed to 0.1% MMS for 90 min as compared to UA159 (P < 0.0002, Fig. 5). The growth was partially restored by complementation with cinA resulting in percentage survival of a 2.

The quantitative PCR of n-damo 16S rRNA gene was performed with s

The quantitative PCR of n-damo 16S rRNA gene was performed with specific primers qP1F-qP1R described previously (Ettwig et al., 2009). Total bacterial numbers were quantified with the primer pair 616F-Eub338-IR specific for the 16S rRNA gene (Amann et al., 1990; Juretschko et al., 1998). Standard curves were obtained with serial dilutions of plasmid DNA containing the target genes. The sequences reported in this study have been deposited in the GenBank database under accession numbers JN704402–JN704415 (n-damo pmoA), JN704416–JN704466 (n-damo 16S rRNA ), and JN704467–JN704568 (anammox hzsB). Owing to the long-term fertilizations, see more the concentrations of nitrogen compounds (, and total

nitrogen) and total organic matter (TOM) in soil were very high (Supporting Information, Fig. S1). Most of the highest values were observed in the upper 10-cm layers except for which was peaked at 10–20 cm (up to 158.8 mg kg−1 dry soil). For , the common electron acceptor for anammox and n-damo bacteria, the highest concentration (53.8 mg kg−1 dry soil) was present at 0–10 cm. After a rapid decrease at 10–30 cm (11.6 ± 0.3 mg kg−1 dry soil), a slight increase in was observed at 30–50 cm of 12.5 ± 0.3 mg kg−1 dry soil, providing a potentially suitable condition for the growth of anammox and

n-damo bacteria. In addition to the previous work exploiting the hzsA gene PS-341 molecular weight (Harhangi et al., 2012), we focused on the hzsB gene in this study. A data set with hydrazine synthase β-subunit DNA and protein sequences from the known anammox bacteria of Candidatus genera ‘Jettenia’, BCKDHA ‘Brocadia’, ‘Scalindua’, ‘Kuenenia’, and Planctomycete KSU-1 available from metagenome sequencing projects and GenBank were aligned. Conserved regions of the aligned sequences were identified and used as the targets for designing degenerate primers (Fig. S2). Six forward and five reverse degenerate primers were designed based on the alignment. The sequences and positions on the gene were shown in Table S1 and Fig. S3. Different combinations of the designed primers were tested and evaluated with

template DNA extracted from anammox enrichment cultures. High intensities of specific band (c. 365 bp) were observed (Figs S4–S7) using the primer pair of hzsB_396F and hzsB_742R (at annealing temperature 59 °C and with 2–2.5 mM MgCl2) by single-step amplification instead of nested PCR which was previously required for soil samples (Humbert et al., 2010; Hu et al., 2011; Zhu et al., 2011b). The PCR products were cloned and sequenced, and a phylogenetic tree of the retrieved hzsB sequences from anammox enrichment cultures was constructed (Fig. S8a). The phylogeny of hzsB was consistent with that of the 16S rRNA gene (Fig. S8b) (Schmid et al., 2008) and the hzsA gene (Harhangi et al., 2012). For the molecular detection of anammox bacteria in soil, the 16S rRNA gene was the most common used biomarker (Humbert et al., 2010; Hu et al., 2011; Zhu et al., 2011b).