We also discuss the role of cholesterol metabolites in the direct regulation of tumor cell growth (intrinsic role), aiming to envisage an integrated view of these two aspects. Oxysterols BI 6727 mouse are generated during cholesterol metabolism through enzymatic reactions by means of cholesterol 24-hydroxylase (24S-HC), sterol 27-hydroxylase (27-HC), cholesterol 25-hydroxylase (25-HC), CYP7A1 (7α-HC), CYP3A4 (4β-HC),
and CYP11A1 (22R-HC), and through autoxidation [2-5], initiated by nonradical reactive oxygen species such as singlet O2, HOCl, and ozone (O3) or by inorganic free radical species derived from nitric oxide, superoxide, and hydrogen peroxide [5]. Some oxysterols, such as 7β-HC and 7KC, are exclusively generated by nonenzymatic cholesterol oxidation, whereas 7α-HC, 4β-HC, and 25-HC can be produced by both pathways
Target Selective Inhibitor Library screening [2]. Finally, 24S-HC and 27-HC can be generated only by enzymatic cholesterol oxidation [2, 3, 5]. These cholesterol precursors, as well as desmosterol [6], can all activate LXRs [7]. LXRα (also known as NR1H3) and LXRβ (also known as NR1H2) are LXR isoforms belonging to the nuclear receptor superfamily, which comprises 48 ligand-dependent transcription factors that control metabolism, homeostasis, development, and cell growth [8]. LXRs regulate cholesterol homeostasis by modulating the expression of various genes (including the ATP-binding cassette (ABC) transporters C1 and G1, the sterol response element-binding protein-1c, and the apolipoprotein E). In particular, LXR-dependent gene expression has been associated with cholesterol efflux and the synthesis of fatty acids and triglycerides [9]. LXRβ is expressed ubiquitously, whereas LXRα is expressed in the liver, adipose tissue, adrenal glands, intestine, lungs, and cells of myelomonocytic lineage
[9]. Of note, Lxrα transcripts are upregulated in CD11c+ and CD11c− cells purified from mice treated with complete Freund’s adjuvant [10], whereas Lxrβ transcripts do not undergo transcript changes (Russo et al. unpublished observations). These results were reproduced in vitro by using these proinflammatory cytokines, such as TNF-α and IL-1β, and TLR ligands, such as LPS [10]. The transcriptional activity of LXRα and -β isoforms requires their heterodimerization with the retinoid X receptor (RXR). LXRs regulate gene expression through direct activation, ligand-independent and -dependent repression, and also by trans-repression [11]. Whereas the transcriptional activity inducing activation of target genes requires the binding of LXR–RXR heterodimers upon ligand engagement on the DNA promoter of the target genes, in the trans-repression model, LXR–RXR heterodimers have been shown to block nuclear factor κβ, signal transducer and transcription activator, and activator protein 1 induced transcription of the proinflammatory genes (COX-2, MMP9, IL-6, MCP-1, iNOS, and IL-1β) in macrophages [12, 13].