Microbiology-sgm 2003, 149:1139–1146.CrossRef 30. Engene N, Coates RC, Gerwick WH: 16S rRNA gene heterogeneity in the filamentous marine cyanobacterial genus Lyngbya. J Phycol 2010,46(3):591–601.CrossRef 31. Engene N, Gerwick WH: Intra-genomic 16S rRNA gene heterogeneity in cyanobacterial genomes. Fottea 2011, 11:17–24. 32.
Noller HF, Woese CR: Secondary Structure of 16S-ribosomal RNA. Science 1981,212(4493):403–411.PubMedCrossRef 33. Olsen GJ, Woese CR: Ribosomal-RNA – a key to Phylogeny. Faseb J 1993, 7:113–123.PubMed 34. Olivier A, Lee HY, Côté JC: Study of the heterogeneity of 16S rRNA genes in γ-proteobacteria: Implications for phylogenetic analysis. J Gen Appl Microbiol 2005, 51:395–405.PubMedCrossRef 35. Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida selleck chemicals Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi C, Yamada M, Tabata S: Complete genome structure of Selleckchem C646 Gloeobacter violaceus PCC 7421, a Selleck AZD4547 cyanobacterium that lacks thylakoids. Dna Res 2003,10(4):137–145.PubMedCrossRef 36. Swingley WD, Blankenship RE, Raymond J: Integrating markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families. Mol Biol Evol 2008,25(4):643–654.PubMedCrossRef 37. Gupta R, Mathews D: Signature proteins for the major clades of Cyanobacteria.
BMC Evolutionary Biol 2010, Urocanase 10:24.CrossRef 38. Criscuolo A, Gribaldo S: Large-Scale Phylogenomic Analyses Indicate a Deep Origin of Primary Plastids within Cyanobacteria. Mol Biol Evol 2011,28(11):3019–3032.PubMedCrossRef 39. Schirrmeister BE, Antonelli A, Bagheri HC: The origin of multicellularity in cyanobacteria. BMC Evolutionary Biol 2011, 11:45.CrossRef 40. Aziz RK, Breitbart M, Edwards RA: Transposases are the most abundant, most ubiquitous genes in nature RID B-2918–2009. Nucleic Acids Res 2010,38(13):4207–4217.PubMedCrossRef 41. Allewalt JP, Bateson MM, Revsbech NP, Slack K, Ward DM: Effect of temperature and light on growth of and
photosynthesis by Synechococcus isolates typical of those predominating in the octopus spring microbial mat community of Yellowstone National Park. Appl Environ Microbiol 2006, 72:544–550.PubMedCrossRef 42. Steunou AS, Bhaya D, Bateson MM, Melendrez MC, Ward DM, Brecht E, Peters JW, Kuhl M, Grossman AR: In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats RID A-1977–2009. Proc Nat Acad Sci U S A 2006,103(7):2398–2403.CrossRef 43. Ferris MJ, RuffRoberts AL, Kopczynski ED, Bateson MM, Ward DM: Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat. Appl Environ Microbiol 1996,62(3):1045–1050.PubMed 44. Rippka R, Waterbury J, Cohenbazire G: Cyanobacterium Which Lacks Thylakoids. Arch Microbiol 1974,100(4):419–436.CrossRef 45.