However, structural changes in ZnO NWs are induced, and the PLX-4720 research buy sensibility of some of their properties to low-energy ion irradiation is revealed. The defects found here can be considered as a result of the precipitation
of point defects generated during the irradiation. Although defect formation and surface roughness are usual in the irradiated NWs, some NWs undergo higher modifications induced by the Ar+ irradiation. Thus, HR-TEM studies revealed that some of the irradiated ZnO NWs were surrounded by a degraded sheath with the same crystalline orientation of the NW core (Figure 7a). Spots shown in the FFT images from these superficial structures were correlated with the inter-planar distances of FDA approved Drug Library cost ZnO. In the extreme case, other irradiated ZnO NWs are surrounded by crystalline nanoparticles with the same ZnO structure but with different orientations with respect to the core (Figure 7b,c), causing the formation of moiré fringes generated by the overlapping of the nanoparticle and NW lattices. In addition, the compositional analysis carried out by EDX spectroscopy (not shown here, see Additional file 3) confirmed that the superficial structures were made up of ZnO. The origin of this sheath is unclear, but it could be the
after effect of the sputtering process due to the Ar+ impingement. Taking into account all the above data, it can be concluded that the ZnO removed from near the surface of the NWs or even from the annihilation of thinner NWs could sublimate and finally be re-deposited on the remaining NWs giving rise to a core/shell structure of a single ZnO crystal NW core surrounded by a ZnO polycrystalline shell. In addition, the possibility of zinc segregation in our irradiated samples cannot be excluded either. The formation of BMS345541 concentration adatoms on the surface after the irradiation is possible [46], and this surface can grow by the agglomeration
of the engendered adatoms Erythromycin during the early stages of bombardment. Figure 6 HR-TEM images of ZnO NW. (a) HR-TEM image recorded on an irradiated ZnO NW (fluence = 1017 cm−2) confirming the high crystalline quality of the nanowire; the inset shows the corresponding FFT recorded along the [0001] zone axis. (b) HR-TEM micrograph of one individual irradiated ZnO NW (fluence = 1017 cm−2) faceted tip. The inset corresponds to the small squared region of the tip, showing the appearance of one extra plane (edge dislocation). Figure 7 HR-TEM micrographs of ZnO nanowires irradiated with a fluence of 10 17 cm −2 . Showing (a) an example of the etched surface (in this case, the removed material layer depth is about 10 nm). In (b, c), redeposited crystalline particles, with different orientations in the cross-sectional surface and the inner region of the wire, respectively, are observed.