Figure 3b is the corresponding HRTEM image The well-resolved lat

Figure 3b is the corresponding HRTEM image. The well-resolved lattice fringes confirmed the single crystalline structure. The measured lattice fringe of selleck chemical 0.325 nm corresponds to the inter-planar distance of (111) plane as known from the bulk ZnSe crystal. Therefore, the growth direction of ZnSeMn nanobelt is designated to be [111]. The result also confirmed the fact that (111) is the most densely packed facet for fcc structure and is

thus the most favorable facet for growth. Figure 3c is a TEM image of nanobelt. Figure 3d is the corresponding HRTEM image. The nanobelt shows a single crystalline structure (see the fast Fourier transform (FFT) image in the inset of Figure 3d). The measured lattice fringe is 0.325 nm. The angle selleck screening library between the lattice plane and the axis direction of the nanobelt is 71° (see in Figure 3d). Therefore, the growth direction of the nanobelt can also be designate to be part of the <111> family directions. Figure 3e is a TEM image of the nanobelt. Figure 3f is the corresponding HRTEM image. Similar with nanobelt, the nanobelt also shows a single crystalline nature and [111] growth direction. The HRTEM also indicates that there are a lot of defect states and impurities in the nanobelt (see the labeled cycle zone in Figure 3f). Figure 3 TEM and HRTEM images. (a) and (b) Single ZnSeMn nanobelt. (c) and (d) Single nanobelt. Insets in (d) are the calculated lattice fringe image and

FFT. (e) and (f) Single nanobelt. Raman spectroscopy can provide abundant structure information and is powerful for fast and non-destructive detection of dopant. Figure 4 shows the micro-Raman spectra of single pure and doped ZnSe nanobelt at room temperature. In the Raman spectrum of the pure ZnSe nanobelt (Figure 4a), the peaks at 205 and 249 cm-1 can be assigned to TO and LO modes of zinc blende ZnSe crystal,

respectively [16]. Figure 4b is the Raman spectrum of the ZnSeMn nanobelt. Besides the LO and TO vibration modes of ZnSe, there is another mode at 285 cm-1 with weak intensity, which related to the defect state (stacking fault) in the Paclitaxel ic50 doped ZnSe [20]. Figure 4c is the Raman spectrum of nanobelt. Besides the 201, 248, and 294 cm-1 vibration modes, there is another mode at 135 cm-1 which is not the intrinsic mode of ZnSe. The 135 cm-1 mode can be assigned to the TO impurity vibration modes of MnSe [21]. The presence of impurity vibration modes of MnSe confirms that Mn can dope into ZnSe nanobelts effectively with MnCl2 as dopant in the present synthesis parameters. However, the absence of impurity vibration modes of MnSe in ZnSeMn nanobelt demonstrates that the concentration of Mn2+ is too low, and the Mn powder is not the appropriate dopant. The vibration modes of the nanobelt are almost the same with those of the nanobelt (Figure 4d). The difference of these two Raman spectra is that the intensity ratio of ZnSe to MnSe mode is larger in the nanobelt.

Comments are closed.