aureus but in only about 20% of animal strains [14]. This phage frequently carries genes encoding human specific immune Selleck Mocetinostat evasion proteins chemotaxis inhibitory protein (chip), staphylococcal complement inhibitor (scin, (unique from scin-B and scin-C) and staphylokinase (sak) [39]. Our analysis of the animal S. aureus strain genome
sequences did not identify any novel MGE genes with a possible surface or immune evasion function. Although it is true that novel immune evasion genes can be difficult to identify from sequence alone, and some may be characterised in the future. The distribution of these genes among large populations awaits large scale comparative genomics studies using sequencing or extended microarray platforms. The fact that
surface and immune evasion proteins varied predominantly in predicted functional regions suggests these proteins do play a role in host interaction and that variants have been selected for. Loughman et al. [24] have investigated seven variants (learn more isotypes) of the FnBPA protein for their ability to bind human fibrinogen and elastin. All variants bound fibrinogen equally well, but one variant bound elastin less efficiently. The fact that all the variants had activity supports the idea that FnBPA does indeed play a role in host-pathogen interaction as presumably variants that do not bind are not selected for. But it is also interesting that elastin binding could be dispensable. Jongerius et al. [11] Poziotinib cell line Abiraterone research buy have shown that SCIN-B and SCIN-C are unable to inhibit AP-mediated hemolysis in serum of species other than humans. They also showed that Ecb and Efb blocked complement of human and 7 other species. Therefore, the function of all variants against all hosts cannot be assumed until appropriate biological studies are performed. Although human and animal lineages have been well described, some human strains do cause infection in animals and vice versa [4, 12, 40]. If specific host-pathogen interactions are necessary,
then perhaps each strain carries one or more key surface and immune evasion proteins that are specific to each of the animal species they colonise. Alternatively, some bacterial proteins may interact with a broad host range. Biological studies to investigate these hypotheses across a broad range of surface and immune evasion proteins are needed. While 58 genomes are currently available for analysis, there are still many lineages of S. aureus that have not been sequenced. This is likely to change in the next few years. However, our analysis suggests that the majority of genes on the stable core and lineage specific regions of the genome may have been sequenced already, and few very different genes or gene variants will be described. The exceptions may be in fnbpA and coa which seem to be remarkably variable and frequently recombining.