J Bacteriol 1996, 178:424–434 PubMed 66 Zeng X, Saxild HH: Ident

J Bacteriol 1996, 178:424–434.PubMed 66. Zeng X, Saxild HH: Identification and characterization of a DeoR-specific operator sequence essential for induction of dra-nupC-pdp operon expression in Bacillus subtilis . J Bacteriol 1999, 181:1719–1727.PubMed 67. Zeng X, Saxild HH, Switzer RL: Purification and characterization of the DeoR repressor of Bacillus subtilis . J Bacteriol 2000, 182:1916–1922.PubMedCrossRef 68. Schuch R, Garibian A, Saxild HH, Piggot PJ, Nygaard P: Nucleosides as a carbon source in Bacillus subtilis : characterization of the drm-pupG operon. Microbiology 1999, 145:2957–2966.PubMed

69. Posthuma CC, Bader R, Engelmann R, Postma PW, Hengstenberg W, Pouwels PH: Expression of the xylulose 5-phosphate phosphoketolase gene, xpkA , from Lactobacillus pentosus MD363 is induced by sugars that are fermented via the phosphoketolase pathway and is repressed by glucose see more mediated by CcpA AMN-107 and the mannose phosphoenolpyruvate phosphotransferase system. Appl Environ Microbiol 2002, 68:831–837.PubMedCrossRef 70. Charrier V, Buckley E, Parsonage D, Galinier A,

Darbon E, Jaquinod M, Forest E, Deutscher J, Claiborne A: Cloning and sequencing of two enterococcal glpK genes and regulation of the encoded glycerol kinases by phosphoenolpyruvate-dependent, phosphotransferase system-catalyzed phosphorylation of a single histidyl residue. J Biol Chem 1997, 272:14166–14174.PubMedCrossRef 71. Darbon E, Servant P, Poncet S, Deutscher J: Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression. Mol Microbiol 2002, 43:1039–1052.PubMedCrossRef 72. Barrangou R, Azcarate-Peril Glycogen branching enzyme MA, Duong T, Conners SB, Kelly RM, Klaenhammer TR: Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Proc Natl Acad Sci USA 2006, 103:3816–3821.PubMedCrossRef 73. Chaillou S, Postma PW, Pouwels PH: Contribution of the phosphoenolpyruvate:mannose

phosphotransferase system to carbon catabolite repression in Lactobacillus pentosus . Microbiology 2001, 147:671–679.PubMed 74. Veyrat A, Gosalbes MJ, Perez-Martinez G: Lactobacillus curvatus has a glucose transport system homologous to the mannose INCB28060 clinical trial family of phosphoenolpyruvate-dependent phosphotransferase systems. Microbiology 1996, 142:3469–3477.PubMedCrossRef 75. Veyrat A, Monedero V, Perez-Martinez G: Glucose transport by the phosphoenolpyruvate:mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression. Microbiology 1994, 140:1141–1149.PubMedCrossRef 76. Viana R, Monedero V, Dossonnet V, Vadeboncoeur C, Perez-Martinez G, Deutscher J: Enzyme I and HPr from Lactobacillus casei : their role in sugar transport, carbon catabolite repression and inducer exclusion. Mol Microbiol 2000, 36:570–584.

Comments are closed.