Cells were cultured in medium alone, or in the presence of intact

Cells were cultured in medium alone, or in the presence of intact functional GiADI (produced, purified and tested as described in Jerlstrom-Hultqvist et al [41]), heat denatured (80°C for 10 min) GiADI (GiADIb), as well

as an equal dilution of BSA 1 μg/mL and PreScission enzyme containing buffer used for elution of GiADI, in combinations with 0.4 mM arginine or citrulline and Selleckchem Danusertib T-cell stimulatory anti-CD3 (mouse IgE moab; CLB-T3/4.E; final concentration 0.3 μg/mL) and anti-CD28 (mouse IgG1moab; CLB-CD28/1; final concentration 0.8 μg/mL) from the Central Laboratory of the Netherlands Red Cross Blood Transfusion Services (Amsterdam, The Netherlands). Cultures were performed in triplicates for 6 days at 37°C in a humidified atmosphere of 5% CO2. PBMC proliferation assay Cellular proliferative responses were measured by the incorporation

of 3H-thymidine into newly synthesized DNA by conventional proliferation assay [42]. After 5 days of culture cells were pulsed with 37 kBq/well of 3H-thymidine (Perkin Elmer, Boston, MA, USA) and harvested 18 h later onto glass-fibre pads. Amounts of DNA-incorporated radioactivity were determined by Epacadostat order liquid scintillation counting. Proliferation was determined as counts per minute (cpm). Data analysis If not mentioned otherwise, ACP-196 nmr all data were analyzed using Microsoft Office Excel 2010. Figures were prepared in Adobe Illustrator CS4. Statistical analyses were performed by two-tailed student’s t-test (p-value <0.5, significant; < 0.01, highly significant). Acknowledgements Steinar Sørnes is thanked for assistance in the lab. Alessandro Giuffre, University of Rome, is acknowledged for sharing of the anti-flavohemoglobin antibody. This study was supported by VR-M and FORMAS (Sweden). Electronic supplementary material Additional file 1: Describes primers used in RT-PCR analyses also (Table S1), expressions of arginine consuming

enzymes in IECs interacting with strain WB (Table S2) , GS (Table S3) and P15 (Table S4). Table S5 describes expression of arginine-consuming enzymes in Giardia WB trophozoites during interaction with IECs. (XLSX 22 KB) References 1. Svard SG, Hagblom P, Palm JE: Giardia lamblia – a model organism for eukaryotic cell differentiation. FEMS Microbiol Lett 2003, 218:3–7.PubMed 2. Ankarklev J, Jerlstrom-Hultqvist J, Ringqvist E, Troell K, Svard SG: Behind the smile: cell biology and disease mechanisms of Giardia species. Nat Rev Microbiol 2010, 8:413–422.PubMed 3. Savioli L, Smith H, Thompson A: Giardia and cryptosporidium join the ‘neglected diseases initiative. Trends Parasitol 2006, 22:203–208.PubMedCrossRef 4. Adam R: Biology of Giardia lamblia. Clin Microbiol Rev 2001, 14:447–475.PubMedCrossRef 5. Ali S, Hill D: Giardia intestinalis. Curr Opin Infect Dis 2003, 16:453–460.PubMedCrossRef 6. Wensaas KA, Langeland N, Hanevik K, Morch K, Eide GE, Rortveit G: Irritable bowel syndrome and chronic fatigue 3 years after acute giardiasis: historic cohort study. Gut 2012, 61:214–219.PubMedCrossRef 7.

Comments are closed.